Explicit Iterative Methods of Second Order and Approximate Inverse Preconditioners for Solving Complex Computational Problems
نویسندگان
چکیده
منابع مشابه
Multilevel Preconditioners for Mixed Methods for Second Order Elliptic Problems
A new approach of constructing algebraic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general geometry is proposed The linear system arising from the mixed methods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which corresponds to a linear system generated by standard nonco...
متن کاملSparse Approximate Inverse Preconditioners for Iterative Solvers on GPUs
For the solution of large systems of linear equations, iterative solvers with preconditioners are typically employed. However, the design of preconditioners for the black-box case, in which no additional information about the underlying problem is known, is very difficult. The most commonly employed method of incomplete LU factorizations is a serial algorithm and thus not well suited for the ma...
متن کاملParallel Approximate Inverse Preconditioners
There has been much excitement recently over the use of approximate inverses for parallel preconditioning. The preconditioning operation is simply a matrix-vector product, and in the most popular formulations, the construction of the approximate inverse seems embarassingly parallel. However, diiculties arise in practical parallel implementations. This paper will survey approximate inverse preco...
متن کاملMultiresolution Approximate Inverse Preconditioners
We introduce a new preconditioner for elliptic PDE’s on unstructured meshes. Using a wavelet-inspired basis we compress the inverse of the matrix, allowing an effective sparse approximate inverse by solving the sparsity vs. accuracy conflict. The key issue in this compression is to use second-generation wavelets which can be adapted to the unstructured mesh, the true boundary conditions, and ev...
متن کاملAlmost optimal order approximate inverse based preconditioners for 3-d convection dominated problems on tensor-grids
For a one-dimensional diffusion problem on an refined computational grid we present preconditioners based on the standard approximate inverse technique. Next, we determine its spectral condition number κ2 and perform numerical calculations which corroborate the result. Then we perform numerical calculations which show that the standard approximate inverse preconditioners and our modified versio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2020
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2020.114023